Missing the Reef for the Corals
Unexpected Trends Between Coral Reef Condition and the Environment at the Ecosystem Scale
Unexpected Trends Between Coral Reef Condition and the Environment at the Ecosystem Scale
Ocean warming is fueling stronger hurricanes.
New research shows that hurricane maximum wind speeds in the subtropical Atlantic around Bermuda have more than doubled on average over the last 60 years due to rising ocean temperatures in the region.
The subtropical oceans are getting warmer and saltier, losing oxygen, and gaining carbon dioxide, and in the recent decade, these changes have accelerated.
Two open-ocean hydrographic stations record 40 years of change in the subtropical North Atlantic Ocean
An evolutionary study finds that pteropods, or "wing-footed" sea snails and slugs, have faced acidified oceans in the past - and survived.
New research shows that pulses of cooler deep water reduced heat stress responses in corals.
New research relates shell shapes and body geometries and sizes with swimming abilities and sinking behaviors, which impact vertical migration and distribution.
New research shows that pulses of cooler deep water reduced heat stress responses in corals
New research quantifies light availability on coral reef ecosystems
The oceans help buffer the Earth from climate change by absorbing carbon dioxide and heat at the surface and transporting it to the deep ocean. New research indicates the North Atlantic Subtropical Mode Water, an upper ocean water mass, is shrinking in a changing climate and becoming a less efficient sink for heat and carbon dioxide.
New research indicates that upper ocean water masses are shrinking in a changing climate
A new study of Hurricane Nicole by researchers at the MBL and BIOS has provided novel insight on those impacts. Nicole had a significant effect on the ocean's carbon cycle and deep sea ecosystems, the team reports.
New research reveals that ecological factors influences the distribution of lionfish on deep reefs
Knowing when to hand-hold and when to step back is crucial for helping early-career researchers.
Climate simulations and analyses of Atlantic hurricane activity indicate that the record number of tropical cyclones that occurred in 2005 (28 storms) is close to the maximum number that might occur in this region, given existing climate conditions.
Climate simulations and analyses of Atlantic hurricane activity indicate that the record number of tropical cyclones that occurred in 2005 (28 storms) is close to the maximum number that might occur in this region, given existing climate conditions.
07 July 2017 / Kiel. In 2014, an international research team led by the Kiel Cluster of Excellence “The Future Ocean” and the GEOMAR Helmholtz Centre for Ocean Research Kiel was able to investigate in detail eddies in the Atlantic Ocean which were characterized by extremely low oxygen concentrations. The interdisciplinary analysis of the data and samples has revealed processes which were not previously known to occur in the Atlantic. This also includes the natural production of considerable amounts of greenhouse gases, as the team has now published in the international scientific journal Scientific Reports.
Oleander Workshop II: 25 Years of Operations; Narragansett, Rhode Island, 26–27 October 2016
As they grow, corals are bathed in a sea of marine microbes, such as bacteria, algae, and viruses. While these extremely abundant and tiny microorganisms influence coral communities in a variety of ways, a new study by researchers at WHOI, BIOS and UCSB reveals that corals also have an impact on the microbes in waters surrounding them.
There was a period during the last ice age when temperatures in the Northern Hemisphere went on a rollercoaster ride, plummeting and then rising again every 1,500 years or so. Those abrupt climate changes wreaked havoc on ecosystems, but their cause has been something of a mystery. New evidence shows for the first time that the ocean's overturning circulation slowed during every one of those temperature plunges -- at times almost stopping.
Five years of data collected on reefs and offshore in Bermuda shows that coral reef chemistry – and perhaps the future success of corals – is tied not only to the human carbon emissions causing systematic ocean acidification, but also to seasonal and decadal cycles in the open waters of the Atlantic, and the balance of biochemical processes in the coral reef community.
Our oceans need an immediate and substantial reduction of anthropogenic greenhouse gas emissions. If that doesn't happen, we could see far-reaching and largely irreversible impacts on marine ecosystems, which would especially be felt in developing countries.
Corals may glow yellow, orange and red to improve light conditions for algae. Read more in Nature.com.
Read more at TheBlaze.com
New research on coastal sediments, funded in part by BIOS’s Risk Prediction Initiative, shows that prehistoric hurricanes along the northern East Coast of the United States were likely more frequent and intense than those that have hit within recorded history.
New maps, based in part on long-term data from BIOS, show how changing seasons and geography impact acidification patterns and highlight where marine organisms may face the biggest challenges as carbon dioxide emissions continue to impact ocean chemistry.
Ammonium deposited over the open ocean comes almost entirely from natural marine sources, not from human activities like agriculture, as was previously believed, a new study of rain samples taken in Bermuda suggests.
Two years of rainwater samples collected at the Tudor Hill Marine Atmospheric Observatory enabled a team of researchers from BIOS, Brown University and Princeton University to track sources of nitrogen to the open ocean.
BIOS scientist Rachel Parsons (Oceanic Microbial Observatory Lab Manager) is lead author on a study that looked at the microbial communities within Devil's Hole, Bermuda. Read more to learn how Devil's Hole acts as a natural laboratory for research related to climate change.