In situ incubation experiments, complemented by tissue analyses, were conducted with the coral Porites lutea at four sites featuring contrasting environmental conditions: two shallow (3m) reefs in Spermonde Archi-pelago (Indonesia) subjected to coastal pollution (Lae Lae, LL) and oligotrophic waters (Bonebatang, BBA), respectively; a deep (20m, KR-D) and a shallow (7m, KR-S) reef at off-shore Ko Racha (KR) in the Andaman Sea (Thailand) subjected to pulsed upwelling. Mean tem-perature varied only little (29-30°C). While most tis-sue parameters responded to light and nutrient changes as ex-pected, metabolic rates revealed surprising patterns: 3-fold elevated calcification occurred at KR-S compared to all other sites despite reduced gross photosynthesis. Fur-ther-more, equal photosynthesis occurred in 7 and 20m depth at KR, despite a 5-fold reduction in light intensity, which could not be solely ascribed to photo-acclimation processes, such as increased cell-specific chlorophyll a in 20m depth. These findings support the notion of a highly flexible species and indicate that this might partly be ascribed to a strong variation in the internal turnover of oxygen and nutrients between coral host and zooxanthellae, meaning a strong variation in the rates of energy ac-quisition. Those differences are particularly difficult to determine in situ, but require greater attention in the future in order to enhance our understanding of metabolic pro-cesses and acclimatization abilities.