We addressed how the extreme environmental conditions of the Red Sea impact or alter patterns of vertical distri- bution and vertical migration of five euphausiid species that are known from other oceans. Euphausia diomedeae was abundant and performed diel vertical migration (DVM) from >200 m in daytime to <100 m at night, similar to its pattern in other ocean regions. Euphausia sibogae and Euphausia sanzoi also showed consistent patterns of DVM across their ranges in the Red Sea and elsewhere. Two species, Stylocheiron affine and Stylocheiron abbreviatum, did not exhibit DVM. DNA barcode sequences for mitochondrial cytochrome oxidase I (COI) were used to confirm species identifications for four species (no previous barcode data exist for E. sanzoi). COI sequence differences averaged 2.8% (SD 3.1%) within species and 16.6% (SD 0.7%) between species, similar to previous studies of euphausiids. Red Sea specimens of S. affine matched morphological descriptions of a western equatorial form and differed 14% from Atlantic and Pacific specimens, suggesting possible cryptic species-level variation within this taxon. Widely distributed species of zooplankton may exhibit broad tolerance ranges for key environmental variables, and have considerable potential to adapt to variable and changing conditions across their geographic range.

Download full article (pdf)